
	

	
	

	
	
Symposium	 on	 AI,	 Games	 and	 Virtual	
Reality	
	
	
In	 conjunction	 with	 the	 2018	 Convention	 of	 the	 Society	 for	 the	 Study	
of	 Artificial	 Intelligence	 and	 Simulation	 of	 Behaviour	 (AISB	 2018)	
	
	
	
5th	 April	 2018	
	

POSH-SHARP:
A Lightweight ToolKit for Creating Cognitive Agents

Swen E. Gaudl1

Abstract. Agent design is an intricate process requiring skills from
different disciplines. Thus experts in one domain are not necessarily
experts in the others. Supporting the design of agents is important
and needs to address varying skill and expertise as well as varying
handling the design of complex agents. In this paper, a new agent
design toolkit –POSH-SHARP– for intelligent virtual agents (IVAs)
and cognitive embodied agents is presented. It was designed to ad-
dress the need for a robust agent development framework in highly
restrictive environments such as the web or smartphones while being
useful to both novice and expert users. It includes advanced func-
tionality such as debug support, explicit design rules using a related
design methodology and a simple set-up and distribution mechanism
to reduce the authoring burden for large iteratively developed agents.
The new framework was implemented in C# and contains sample
code for different game environments to offer novice users a starting
point.

1 Introduction
This paper presents a new agent modelling toolkit and framework
for designing intelligent virtual agents (IVAs) in games which offers
affordances such as an easy set-up and distribution within industrial
game environments, support for debugging and a low computational
overhead.

Non player characters (NPCs) in games can range from simple
entities that respond with a pre-determined reply such as giving the
player a quest from a stack of quests to embodied cognitive agents
that respond based on the players behaviour and the state of the
world. In the first instance —the simple agent— finite state machines
(FSMs) can be sufficient for modelling the behaviour of such entities.
The agent does only select from a stack of quests an item and returns
it to the player and might vary the reply sentence based on a list of
pre-written replies. However, when the game world and the response
patterns have to be more complex, more sophisticated approaches
might be required. State machines present a very visual, easy way
of modelling behaviour, which makes them appealing to designers in
contrast to decision tables or rule-based approaches. The downside f
a state machine is that the number of transitions and changes to the
underlying model do not scale well for large systems. Hierarchical
state machines (HFSMs) aid in this situation marginally as they offer
levels of abstraction and detail to model the behaviour of an entity on
different granularities. Based on HFSMs, BehaviorTree (BT) [5, 7]
became a dominant approach in the games industry as the approach
scales well, can be visualised well and has a low computational over-
head. In academia, more experimental approaches were developed
such as ways to model more expressive agents using ABL[16] or

1 MetaMakers Institute, UK, email: swen.gaudl@gmail.com

to model cognitive processes more closely in FATIMA [8]. Due to
the increasing capabilities of personal computers, existing cognitive
frameworks were also used to model agent behaviour such Soar [20].
A similar approach to BT for modelling behaviour was developed by
Bryson [3] with a focus on agent-based modelling in Science. Bryson
integrated a design methodology with a LISP-like language –posh–
and planner to allow novice programmers to model complex agent
processes in a more guided way.

A novel framework and planner –POSH-SHARP– for design-
ingPOSH agents is presented which extends the capabilities of its
predecessor JYPOSH and offers new mechanisms of building and
maintaining complex cognitive agents for virtual environments.

The rest of this paper is organised as follows. In Section 2, the con-
text of the new system and how it positions itself within similar ap-
proaches is given. The system and its core components are described
in Section 3 which included examples from existing agent imple-
mentations. The paper is finalised by a discussion of future work and
open challenges.

2 Background & Related Work

Digital Games are more than software systems, they are cultural arte-
facts and artworks as well and are often highly interactive. Thus, de-
signing and building games requires support beyond software engi-
neering. SCRUM for Games [13] was developed to aid the design
of games from a technical perspective but stays at a high abstrac-
tion level not supporting the design of its components, e.g. the AI
system controlling characters. Agile Behaviour Design (A-Bed) [9]
discusses an approach for aiding the design process of character AI
and supplies a process model for developing agents, addressing this
need for more fine-grained support. The presented toolkit uses but is
not limited to A-Bed as a design method.

For games driven by a story or relying on the interaction between
player and agent, agent design is a crucial part requiring a deep un-
derstanding of the game mechanics as well as the intended plot of
the game. If done badly, agents can destroy the entire experience of
a game by being either boring, too repetitive, obviously cheating, or
un-responsive. One mechanism to develop less rigid agents is the use
of planning systems such as GOAP [17]. Planners require expert au-
thors to design the initial restrictions for a given domain. The planner
then at runtime uses domain knowledge to predict ad plan possible
behaviours to achieve the designed goal. This reduces the interde-
pendence of nodes and the amount of manual checking transition
for an author as they do not need to check all possible combinations
when designing agent goals. This allows the resulting agent to scale
well when designing separate goals incrementally. Mateas proposed
an approach for writing complex, branching interactive drama for

games using a planning system — ABL[15]. In Façade this system
monitors the responses and actions of the player and directs the story
based on story beats in a certain way to create a novel and inter-
esting experience. [19] uses the same approach to control a set of
managers to create an agent for real-time strategy games. The ad-
vance of using a planning approach is that the system can respond
to unforeseen changes and is very customisable and scales well even
for highly complex agents. The downside of ABL is that the setup
is complex and it requires a high level of skill to develop and main-
tain agents as the author needs to be both an expert in the domain
of the game as well as an expert in planning systems. Due to the
runtime creation of the agent and its changing representation, agents
designed with able are hard to debug or inspect. An alternative to de-
signed and planned behaviours is the use of cognitive approaches to
model agents and then use those to drive to the story. This approach
produces more IMPROV-style games or art installations such as Al-
phaWolf [12], an installation which simulates the behaviour of a wolf
pack offering player interaction. Cognitive agent approaches offer an
entirely new opportunity for scalable agent design as the designer
only models individual agents in terms of their motivations and how
they perceive and interact with the environment and other agents.
Thus, the agents have to reason individually of how to achieve their
goal reducing partially the complexity of pre-specifying each inter-
action. However, cognitive systems such as Isla et al.’s c4 system, or
Sorts[20], a cognitive real-time strategy player, require a lot of com-
putation resources as well as a thorough understanding of cognitive
modelling. Because of these two reasons more sophisticated systems
never transitioned into actual practice.

After introducing BT as a way of designing and structuring agent
behaviour beyond state machines, Isla worked on a more applicable
system working – the F.E.A.R. system [6]. Their system integrates
a reactive planning system with lazy evaluation of memory2 to al-
low for more performance but still heavily relies on experts when
designing plans but offers better support in terms of tool support and
computational resources.

3 POSH-SHARP

POSH is a lightweight reactive planning language offering a similar
way to structuring behaviours to BT. However, it uses a separation
between plan and agent implementation to decouple the platform-
independent design of the plan with the platform-dependent imple-
mentation of the agent’s actions, senses and memory within a given
system or game.

POSH, as a lightweight planner allows local design by modifying
existing Competences due to the ability to nest Competences and the
hierarchical structure of the drive collection. As Competences are re-
used and handled by the planner, the amount of connections which
need to be adjusted is similarly low compared to other reactive plan-
ners. In combination with the proposed Agile Behaviour Design (A-
Bed), it is possible to work on smaller sections of an agent by focus-
ing on Drives and Competences while the dependencies between de-
signer and programmer are reduced. Similar to BT design tools such
as SKILL STUDIO3, DI-LIB4 and BRAINIAC DESIGNER5,POSH used
the ABODE editor to support designers when writing plan flies.

2 In F.E.A.R. sensory information and memory is only updated every few
frames to amortise the computational costs. When not updated the previous
information is presented instead requiring no computation.

3 https://skill.codeplex.com/
4 http://dilib.dimutu.com/
5 http://brainiac.codeplex.com/

To enhance the support of game AI development, a new arbitration
architecture is proposed – POSH-SHARP– which alters the structure
of the existing JYPOSH system and contains four major enhance-
ments: multi-platform integration, behaviour inspection, behaviour
versioning and the Behaviour Bridge.

The new system switches the implementation language from
Java&Python to Microsoft’s C#– a platform-independent language
which in contrast to Oracle’s Java is fully open-source. Additionally,
a resulting agent can be integrated better into most commercial prod-
ucts based on the usage of a new deployment model of the system—
the dynamic libraries (DLL). The POSH-SHARP DLLs allow a de-
veloper to integrate the POSH behaviour arbitration system into any
system which supports external libraries. The strength of this method
in contrast to JYPOSH is the removal of the dependency on a JAVA
virtual machine or a Python installation as all required libraries are
dynamically linked. This reduces the configuration time and poten-
tial problems with incompatibilities or wrong setups. POSH-SHARP
was designed to work on computationally less powerful devices such
as smartphones or in the web-browser emphasising the lightweight
nature of POSH. To guarantee this POSH-SHARP is mono 2.0 com-
pliant6. The POSH-SHARP architecture is separated into different
distinct modules to allow the developer, similar to the node collaps-
ing in plans, to focus on smaller pieces of source-code and fewer
files. The previous JYPOSH7 system required a complex setup for in-
dividual machines and relied on access to system variables of the op-
erating system. It also required the developer to maintain a complex
folder structure which contained all sources and compiled code for
both POSH and the behaviour library. To support and extend the sep-
aration of logic and implementation most languages use some form
of container format. In JAVA modules are clustered and distributed
in Jar files and in Python egg files. This helps reduce the burden of a
programmer to maintain a manageable code base.

Figure 1: The POSH-SHARP architecture once the modules have
been integrated into an environment, e.g. the integration with a game
engine such as Unity.

6 The Mono project provides a free C# platform-independent library sup-
ported by Microsoft. Mono 2.0 is the language level used for mobile devices
and in the Unity game engine is used for full cross-platform compatibility.
Mono is available at: http://www.mono-project.com

7 http://www.cs.bath.ac.uk/˜jjb/web/pyposh.html

3.1 POSH-SHARP Modules

Figure1 illustrates a view of the new layout of POSH-SHARP mod-
ules within a system and includes a view of how it integrates into an
environment such as a game engine.

• The launcher is the smallest module. It is responsible for select-
ing which plan to load, to tell the planner to construct a POSH

tree based on a serialised plan and finally to connect the core to
the environment. The launcher receives upon start a set of param-
eters containing an agent definition and link to the environment.
The launcher then calls the core and specifies which agent is con-
nected to which plan. It additionally makes the behaviour library
in the form of dlls accessible to the core. The launcher is plat-
form dependent and is available for Mac and Windows and can be
re-compiled based on the project’s needs. For the Unity game en-
gine8 a specific launcher exists and integrates fully into the game
engine.

• The core module is platform independent and can be used “as-is”
as it does not rely on other modules, see POSH SHARP(POSH
Structure) in Figure 1. As a first step, the core instantiates a POSH

agent responsible for enveloping the POSH tree and the connected
behaviour objects with their contained short-term memory. After
creating an agent shell, the planner uses the serialised plan file
to instantiate a POSH tree for the agent. For that, it inspects the
behaviour libraries and instantiates all behaviours for the agent
which contain primitives required by the serialised plan. This pro-
cess is done for each agent. After all agents embed a live POSH

tree, the core links the agent to the environment exposing the sen-
sory primitives to receive information and the action primitives to
interact with it. The core also contains a monitor for each agent
that allows live debugging and tracing of agent behaviour.

• A behaviour library is a self-contained set of behaviour classes
wrapped in a dynamic library file (DLL). They are coded by a
programmer and implement the functionality used in conjunction
with a POSH plan. The behaviour classes contain POSH action and
senses, as illustrated in Figure 2. The advantage over JYPOSH
is that the core automatically inspects all behaviours and loads
only those who are correctly annotated. Thus, there is no need
to specify a list of actions and senses within the header of a be-
haviour. Additionally, behaviour primitives can be ”versioned”, a
new feature in POSH-SHARP which offers the programmer a way
to develop an agent incrementally without overriding and deleting
working functionality.

• The last component of POSH is the plan library which contains
a collection of POSH plans. The POSH-SHARP plans are identi-
cal to the JYPOSH plans allowing users to migrate their plans to
different systems. The plans are in a Lisp-like syntax and can be
interpreted as serialised POSH trees that are used by the planner.

3.2 Behaviour Inspection & Primitive Versioning

In previous versions of POSH, behaviours had to contain lists of string
names referencing behaviour primitives to be used upon loading the
class. Additionally, all behaviours had to be in a behaviour library
folder in source format. This behaviour folder was inside the same
folder hierarchy as the POSH system, also as source files. This project
structure forces developers to maintain and manage more files than

8 Unity is a fully featured commercial game engine which supports the
cross-platform development of games and is available at http://
unity3d.com/

1 [ExecutableAct ion (” a charge ” , 0.01 f)]
2 p u b l i c vo id Recharging ()
3 {
4 / / Set an appropr ia te speed f o r the

NavMeshAgent .
5 Loom . QueueOnMainThread (() =>
6 {
7 i f (nav . speed != patrolSpeed)
8 nav . speed = patrolSpeed ;
9

10 / / Set the d e s t i n a t i o n to the charging
WayPoint .

11 navDest ina t ion = charging . chargerLocat ion .
p o s i t i o n ;

12

13 i f (nav . d e s t i n a t i o n != navDest ina t ion)
14 {
15 nav . d e s t i n a t i o n = navDest ina t ion ;
16 nav . Resume () ;
17 }
18 / / I f near the next waypoint or there i s no

d e s t i n a t i o n . . .
19 i f (nav . remain ingDistance < nav .

s topp ingDis tance && nextToCharger)
20 {
21 nav . Stop () ;
22 / / asynchron charge b a t t e r i e s
23 Loom . RunAsync (() =>
24 {
25 charging . Charging () ;
26 }) ;
27 }
28 }) ;
29 }

Figure 2: A behaviour primitive for recharging a robot within the
STEALTHIER POSH Android game. The action uses a NavMesh
to determine the position of the agent and then charger the robot
once the agent is close enough to the charger. To allow for thread-
ing a scheduler (Loom) is used to outsource specific tasks into
Unity’s internal update thread. The action is set to version 0.01
which allows later actions to override the behaviour and the ac-
tion links to the plan name a chargeMore details on the game
are available at https://play.google.com/store/apps/
details?id=com.fairrats.POSH

necessary, it reduces the visibility of own behaviours and increases
the chance of modifying or removing essential parts of POSH unwill-
ingly. POSH-SHARP introduces the packaged POSH core, combin-
ing the planner and the entire structure of the system into a 111kB
sized dynamic library file. Behaviour files are also compiled into be-
haviour library DLLs. This is supported by free tools such as Xa-
marin’s Monodevelop9. Upon starting POSH-SHARP, the core re-
ceives as a parameter a list of dynamic libraries which should be
inspected.

Once the POSH plan is loaded, POSH-SHARP inspects all libraries
and loads all that contain annotated primitives which are referred
to by the currently active serialised plan. Using dynamic libraries
reduces the number of files developers and users have to handle and
reduces the risk of erroneous handling of files.

The behaviour inspection uses the specific POSH annotations to
identify primitives within a behaviour library file. There are two
standards annotation classes ExecutableAction and ExecutableSense

9 Monodevelop is an open-source Mono/C# IDE available at http://
www.monodevelop.com/

Figure 3: The STEALTHIERPOSH Android game illustrating the us-
age of the logging mechanism on the upper left side of the screenshot.
The output contains 10 lines which update every seconds by adding
new content ad the top and fading out old information at the bottom.

, both augment a method and attach a name reference allowing the
planner to search for them by the name and a version number. In Fig-
ure 2 an example action from the STEALTHIER POSH Android game,
see Figure 3,is given which is using POSH-SHARP. The primitive is
called by the planner when the robot agent needs to recharge the bat-
tery and uses a NavMesh[18] to identify if the agent is spatially close
to a charger. To follow AB-ED, primitives should be as independent
as possible and use their perception to reduce interdependencies. In
this case, checking the internal state of the NavMesh. By offering the
planner to inspect and search for possible primitives instead of pro-
viding them as a list when coding a behaviour library, a potential risk
of mistakes is removed from the development process. The usage of
the extra name tag allows the usage of names which would otherwise
break the naming convention of C# and allows for more descriptive
and customised names.

The behaviour primitive versioning uses the second parameter of
the annotation. The planner in default mode always selects at run-
time the primitive with the highest version number. This mechanism
allows the planner to exchange primitives during execution if needed.
Dynamic primitive switching is a complex process and needs fur-
ther investigation and feedback from the user community. However,
overloading existing primitives at design-time is a powerful process
which allows developers to extend functionality by following the idea
of Brook’s SUBSUMPTION idiom in a real-time manner. It also of-
fers more customisation option to a designer as behaviours can be
swapped in and out.

3.3 Memory & Encapsulation
Similar to architectures such as ACT-R[1] and Soar[14], POSH-
SHARP provides a centralised way to store and access perceptual
information about the environment. Game environments have strong
restrictions on computation. Thus, polling sensors which require
computation or perform continuous checks should be as rarely used
as possible. The usage of a fair amount of polling sensors reduces
the time the agent has to undertake the actual reasoning. The Be-
haviour Bridge illustrated in Figure 1 provides centralised access to
perceptual information acquired from the game environment. Each

individual behaviour is able to access and share this information
and use it internally. In a sense, the Behaviour Bridge is to some
degree similar in its function to the corpus callosum in the mam-
malian brain. It offers an interface between parts which are spatially
separated due to their distance in the brain and provides a fast and
efficient means of information exchange. It is designed around the
software Listener Pattern, making game information available to all
subscribed behaviours. When removed or damaged most of the brain
still functions, however, some functions are then erroneous or slower.
The same applies to the Behaviour Bridge as it allows information
exchange but does not undertake actual communication or computa-
tion.

Memory, same as in other POSH versions, is contained within in-
dividual behaviours. There is a strong argument for self-contained
behaviours and their internal memory which is, that their usage sup-
ports lower inter-dependencies between behaviours and fosters the
modularisation & exchange of behaviours. POSH-SHARP supports
this exchange through behaviour library files which offer easy ex-
change by swapping out individual dynamic library files. Thus, a
general focus on a specific class in a library outside the core could
break the entire agent.

A global blackboard as part of the architecture is currently not
supported by POSH-SHARP, even though the integration would be
easy using the Behaviour Bridge. The usage of a blackboard or long-
term memory, similar to the memory types by [17] or the Working
Memory Elements of ABL, introduces extra complexity into the de-
sign process which may not be desirable for a light-weight novice-
oriented architecture. Behaviour designers using a blackboard need
to take potential memory into account when designing behaviours.
This means that the memory emerges and changes over the course of
the experience, requiring additional careful design and anticipation
of behaviours interacting with it.

Instead of a global blackboard which offers reading and writing
complex information from it, POSH-SHARPprovides the Behaviour
Bridge. Using the Behaviour Bridge, POSH-SHARP provides a cen-
tralised way for perceptual information to be exchanged and ac-
cessed as proposed in Figure 1. The bridge stores similar to the cX
system[12], perceptual information about the agent and the state of
the environment. That information is not available at the planning
level and is currently only intended to remove redundant or reduce
the number of costly calls to the environment. The bridge, in con-
trast to a blackboard, only provides access to a domain and problem-
specific set of information and no general purpose memory which
could be realised through a hashmap-type data structure. The main
strength of the bridge is that it inserts its interface into all instantiated
behaviours and offers an uncluttered interface to shared information.
Additionally, the approach does not incorporate the idea of percep-
tual honestly as described by [4] and implemented in the cX system.
Thus, the system allows full access to the environmental informa-
tion, and the designer and programmer can decide which information
to use. The focus with POSH-SHARP is on being a flexible, light-
weight architecture and hiding information should not be handled in
the agent system but designed carefully.

3.4 Monitoring Execution

As identified by Grow et al.[11] in their analysis of three intelligent
agent frameworks the need for logging and debugging functional-
ity is integrated into POSH-SHARP; the analysis also includes the
previous POSH systems.The usage of such functionality would, ac-
cording to the users, aid the understanding of the execution flow and

support the identification of potential problems, both on the design
level and the program level. The problem described by the users is
that when developing complex agents, the agent is not always crash-
ing or stopping when problems occur. With increasing complexity,
it becomes harder to tell apart intended behaviour from faulty one10.
Additionally, the usage of a software debugger, included in most in-
tegrated development environments (IDEs), is not always ideal be-
cause it pauses the application for inspection which is undesirable
for understanding IVAs. To identify mistakes during the execution,
POSH-SHARP offers live logging using a logging interface deeply
integrated into the POSH-SHARP core. The logging uses an internal
event listener which receives events from each POSH element that is
executed. The events contain a time code and the result of triggering
the element. From the developer, this procedure is completely hidden
to reduce the amount of visible code they have to touch and memo-
rise. Nonetheless, they can access the log manager and add extra in-
formation which gets stored in the log. To allow the easy extension of
different developer needs, the log management can be altered using a
pre-compile statement for the core. This allows the system to switch
between two modes of logging. The full log support using LOG411

or no logging which is useful for distributing the core with a final
product when recording large amounts of data is undesirable.

The log structure uses a millisecond time-code and logs the entire
execution in the following form for all agents ai:

S(t) = [t] L ai.plan(DC(t, ai))− return(e(t, ai))
plan(DC(t, ai)) = top(Dactive, ai) = e(t, ai)

The drive collection (DC) has only one drive active (Dactive)for
each agent ai at any given time, and the Drives maintain an execu-
tion stack over multiple cycles. L identifies the log mode which is
currently active the modes include: INFO, DEBUG, ERROR.

To limit the stack of possible behaviours which want to execute
in size [2] introduced the slip-stack. At each cycle, the slip-stack re-
moves the current element (top(stack, agent)) from the execution
stack and executes it, replacing it with its child, which upon revisit-
ing the drive in the next cycle continues with the child node instead
of checking the parent again. This method reduces the traversal of the
tree nodes drastically and fixes the upper bound of the stack. POSH-
SHARP integrates the same concept but instead of maintaining a
stack a marker in the internal tree representation is kept and the ex-
ecution shifts it further down the tree when a drive is called. Instead
of pushing a stack this mechanism reduces the allocation costs of
spawning unneeded pointers.

As the plan unfolds and elements get revisited the log incremen-
tally represents the execution chain of the POSH tree such as the first
line will be the check of the goal for the drive collection, the sec-
ond line contains the check for the highest priority drive and so on.
The action and sense primitives are referenced in the log by their
canonical method name including the class namespace. This allows
for the identification of methods including their annotation name and
version number.

The time resolution of the logs can be adjusted based on the de-
veloper’s needs but to monitor a real-time plan for games; it grows
quite quickly due to the fast call times within the tree. To be able to

10 This issue leads game developers to be cautious when using new ap-
proaches or approaches which allow for learning.

11 Apache’s Log4Net provides a standardised, configurable monitor support
in the form of a modular logging architecture. Using XML based con-
figuration files, it is possible to set up monitor logs handling even large
amounts of data. It is available at https://logging.apache.org/
log4net/

analyse multiple runs of a long execution, POSH-SHARP writes a
continuous-rolling log to manage the individual file sizes better, and
it additionally creates a parallel ”current” log file which is replaced
each time POSH-SHARP get launched again.

The new logging mechanism has a low computational footprint
allowing it to log large amounts of data without impacting the per-
formance. It offers a way to understand the arbitration process by
going through the logs line by line. Due to the standardised format,
the processing of the logs can be automated or streamed to other ap-
plications for a live representation of the agent’s reasoning process.
The STEALTHIERPOSH game offers a way to visualise the reason-
ing process by outputting the goals of all agents in the log format on
screen12.

4 Future Work
The current POSH-SHARP toolkit has been tested in multiple sce-
narios ranging from StarCraft agents [10] to mobile games such
as the previously mentioned STEALTHIER POSH. However, further
feedback from professional developers in combination with exper-
iments in industrial settings are still required to examine potential
weaknesses of the system. The dynamic primitive switching of prim-
itives which was introduced into POSH-SHARP is a complex pro-
cess and needs further investigation and feedback from designers and
testers to make it as useful as possible without affecting the creative
freedom of an author. Visual representations of what agents do and
how their reasoning process can be represented are crucial to the
development of complex behaviour. The current visualisation and
other forms of using the log provide potential directions for future
research. The current approach to editing and visualising plan files
using ABODE is an already identified shortcoming of the toolkit be-
cause the editor does not offer support beyond plan creation and visu-
alisation. Additionally, a new approach for modelling and presenting
parallel drive collections and their impact on each other is required,
if the planner wants to compete with more sophisticated cognitive
approaches. The current memory model provided by the Behaviour
Bridge is a first step towards more cognitive and scalable models for
agents. Nonetheless, this model is not able to compete with complex
memory models in ACT-R and SOAR when using learning mecha-
nisms to alter and evolve posh plans. A new version of memory that
can be inspected by a designer might be a possible direction for fu-
ture work as well.

5 Conclusion
To aid the development and to focus on multi-platform development
the new POSH-SHARP arbitration architecture was proposed which
is based on Bryson’s original concept of POSH and extends it by four
new features: multi-platform integration, behaviour inspection, be-
haviour versioning and the Behaviour Bridge. The idea behind POSH-
SHARP is similar to the original concept of POSH still and addition-
ally aims to provide a light-weight, flexible and modular approach to
designing cognitive agents but increases the usability of the software
by reducing potential problem points. POSH-SHARP introduces the
behaviour library DLL, the core library and the launcher, which re-
duces the number of files to three and creates an easier to maintain a
project. It simplifies the design process by automatically inspecting
library files and extracting all behaviours and behaviour primitives
requested by an agent. This reduces the impact of typos or wrongly

12 An illustration of the visual logging mechanism in STEALTHIERPOSH is
available in Figure 3, page 4.

associated/non-existing primitives in behaviours. POSH-SHARP in-
troduces a modular logging and debugging mechanism which al-
lows a developer to trace the flow of information through the POSH

graph aiding the developer while debugging and helping them cre-
ate a robust agent system. The internal mechanisms such as the Be-
haviour Bridge and the behaviour versioning increase the capabilities
of POSH and remove inter-dependencies between behaviours, The
new mechanisms support robust incremental changes to behaviours.
Future research directions for the toolkit have been identified and of-
fer potential to expand the capabilities of the framework in different
directions.

The combination of POSH-SHARP and AGILE BEHAVIOUR DE-
SIGN is intended to support novice developers by guiding their design
and giving them a robust and helpful set of development tools. The
approach also allows expert developers to profit from explicit design
steps and advanced support which can be used to verify the progress
of a current project.

REFERENCES

[1] John Robert Anderson, Rules of the mind, Psychology Press, 1993.
[2] Joanna J. Bryson, Intelligence by Design: Principles of Modularity and

Coordination for Engineering Complex Adaptive Agents, Ph.D. disser-
tation, MIT, Department of EECS, Cambridge, MA, June 2001. AI
Technical Report 2001-003.

[3] Joanna J. Bryson, ‘The Behavior-Oriented Design of modular agent in-
telligence’, in Agent Technologies, Infrastructures, Tools, and Applica-
tions for e-Services, eds., R. Kowalszyk, Jörg P. Müller, H. Tianfield,
and R. Unland, 61–76, Springer, Berlin, (2003).

[4] Robert Burke, Damian Isla, Marc Downie, Yuri Ivanov, and Bruce
Blumberg, ‘Creature smarts: The art and architecture of a virtual brain’,
in Proceedings Game Developers Conference, pp. 1–20, (2001).

[5] Alex J. Champandard, AI Game Development, New Riders Publishing,
2003.

[6] Alex J. Champandard. Assaulting f.e.a.r.s ai: 29 tricks to arm your
game. http://aigamedev.com/open/review/fear-ai/,
10 2007. last visited: 3. November 2015.

[7] Alex J. Champandard and Philip Dunstan, ‘The behavior tree starter
kit’, in Game AI Pro: Collected Wisdom of Game AI Professionals, ed.,
Steve Rabin, Game Ai Pro, 72–92, A. K. Peters, Ltd., (2013).

[8] Joao Dias, Samuel Mascarenhas, and Ana Paiva, ‘Fatima modular: To-
wards an agent architecture with a generic appraisal framework’, in
Emotion Modeling, 44–56, Springer, (2014).

[9] Swen Gaudl, ‘Agile behaviour design: A design approach for struc-
turing game characters and interactions’, in Internation Conference on
Digital Storytelling: Authoring Tool Workshop, (2017).

[10] Swen E. Gaudl, Simon Davies, and Joanna J. Bryson, ‘Behaviour ori-
ented design for real-time-strategy games – an approach on iterative de-
velopment for starcraft ai’, in Proceedings of the Foundations of Digital
Games, pp. 198–205. Society for the Advancement of Science of Digi-
tal Games, (2013).

[11] April Grow, Swen E. Gaudl, Paulo F. Gomes, Michael Mateas, and
Noah Wardrip-Fruin, ‘A methodology for requirements analysis of ai
architecture authoring tools’, in Foundations of Digital Games 2014.
Society for the Advancement of the Science of Digital Games, (2014).

[12] Damian Isla, Robert Burke, Marc Downie, and Bruce Blumberg, ‘A lay-
ered brain architecture for synthetic creatures’, in International Joint
Conference on Artificial Intelligence, volume 17, pp. 1051–1058. IJ-
CAI, (2001).

[13] Clinton Keith, Agile Game Development with Scrum, Addison-Wesley
Signature Series (Cohn), Pearson Education, 2010.

[14] John E. Laird, Allen Newell, and Paul S. Rosenbloom, ‘Soar: An archi-
tecture for general intelligence’, Artif. Intell., 33(1), 1–64, (1987).

[15] Michael Mateas, Interactive Drama, Art, and Artificial Intelli-
gence, Technical report cmu-cs-02-206, School of Computer Science,
Carnegie Mellon University, December 2002.

[16] Michael Mateas and Andrew Stern, ‘A behavior language for story-
based believable agents’, Intelligent Systems, IEEE, 17(4), 39–47,
(2002).

[17] Jeff Orkin, ‘Agent architecture considerations for real-time planning in
games.’, in Proceedings of the First Artificial Intelligence and Inter-
active Digital Entertainment Conference, eds., Michael R. Young and
Laird John, pp. 105–110, Menlo Park, CA, (2005). AAAI Press.

[18] Greg Snook, ‘Simplified 3d movement and pathfinding using naviga-
tion meshes’, Game Programming Gems, 1, 288–304, (2000).

[19] B.G. Weber, P. Mawhorter, M. Mateas, and A. Jhala, ‘Reactive plan-
ning idioms for multi-scale game ai’, in Computational Intelligence and
Games (CIG), 2010 IEEE Symposium on, pp. 115–122, (2010).

[20] Sam Wintermute, Joseph Xu, and John E Laird, ‘Sorts: A human-level
approach to real-time strategy ai’, Ann Arbor, 1001(48), 109–2121,
(2007).

Evolving game bots for personality and balance
– demo of the new Rebound

Alexander MacDiarmid 1 and David Moffat 1

Abstract. Games can include non-player characters (NPCs or
bots) that play well and give a good challenge, but that are
unrealistic in their behaviours. This lessens the players’
enjoyment. The game Rebound is demonstrated with its bots that
were designed to be more realistic, in two ways. They move
around the level according to steering behaviours; and they are
evolved to allow different personalities to develop. As a proof of
concept only two personalities were allowed to develop, for
aggression or for a more passive style of play.

1 THE GAME REBOUND AND ITS BOTS

Creating an Artificial Intelligence for a game can be difficult.
Some games spend a lot of time and resources creating the
perfect handcrafted AI for their game, while other games create a
simple finite state machine and place in some default values. The
problem with these simple FSM’s is that player can start to see
the same actions happening with very little variation. Players
will expect what the AI is going to do next and this will reduce
the challenge. To compensate the player might increase the
difficulty but usually all this will do is make the same actions
faster.

This demonstration shows the new bots within Rebound,
which is a game underdevelopment. The bots have been evolved,
from a starting configuration that was hand-coded. Two
personality types were allowed to develop independently for the
bots by separating the evolving population into those with
“passive” and “aggressive” behaviours.

The project attempts to create bots for the game Rebound, a four
player, free for all sci-fi dodgeball, using steering behaviours
[3,4] and genetic algorithms [1]. Generally such games as this,
and in first-person-shooter games which are a related genre,
include bots which are classically coded as finite state machines
or behaviour trees, and which move around the world by path-
planning. The bots in the demonstration have been given
steering behaviours, instead, in an effort to make their
movement more natural. Their decision making about which
steering behaviours to activate (e.g. to seek, pursue or flee) is
determined by a finite state machine. Each bot has a set of
parameters to control when to switch from one state to another,
and which steering behaviours should be stronger than others.
These parameters, or variables, are then subject to variation by
genetic algorithms.

Figure 1. Screenshot of Dodgeball.

The method was to create a bot shell, with steering to give a
realistic movement, and then assign all the variables randomly.
Starting with 100 randomly assigned bots each bot plays 16
rounds of Rebound. Each round consists of four bots picked at
random from the starting 100 for three consecutive rounds.

The bots are then split into three groups according to
performance. Those bots with more than 10 wins form the
winning bracket, those with fewer than five wins are in the lower
bracket, and the rest stay in the middle bracket.

Initially, the 100 original bots created 100 children for the
next generation. After five generations, the bottom 48 bots that
have not seen any improvement culled. This continued until
there were 16 bots remaining, after 15 generations.

From generation-5, mutation was introduced into the genetic
algorithm. This allowed the bots to vary more in their
behaviours, but they continued to be played off against each
other and to be selected for stronger game-play.

The bots were then divided into those with more aggressive
play, and the others with a relatively passive style of play.
Aggression is one of the factors that influences several other
behaviours, leading to faster movement, more running and
chasing, and throwing the ball at other players sooner. The
passive bots on the other hand would move around less,
preferring to stay closer to walls, and would only throw the ball

1 Dept. of Digital Design Technologies, Glasgow Caledonian University, UK.

when more confident of the aim. We assumed that the aggressive
bots would be harder for humans to play against.

2 RESULTS

In the first stage of evolution, the bots maintained some variation
in behaviour, while increasing performance. They did not all
collapse into one type of bot, but kept their parameters set apart.
They continued to evolve after they were split into two
personality groups. Their performance stayed the same or
increased, in both groups. Due to the mutation that was
introduced from generation-6, their parameters increased in
variance within both groups.

The two groups of bots evolved to increase their performance,
by survival of the fittest – but they also appeared to maintain
their differences in play-styles, at least judging from the spread
of parameters within the two populations. It remained to be seen
how the bots would perform against human players, what kind of
experience they would give, and whether their two personalities
would be noticed. Two representative bots were selected to play
against pairs of human players, in matches of four players each.

Results from a test session at generation seven show early but
promising results. The bots had some flaws that meant players
could tell they were not played by humans, and so they were not
realistic enough to pass a Turing Test [2], in the initial play-
testing (N = 12). However, some experienced and novice players

Figure 2. The finite-state machine that drives the bots in Rebound.

were able to sense the difference between the two sorts of bot
from their play.

This has introduced a more natural difficulty with aggressive
bots being more difficult to play against than the passive bots.

3 THE DEMONSTRATION

The game can be played on a laptop (Windows) with an X-box
game-controller attached. It would be useful to have a larger
screen to show the game on.

4 REFERENCES

[1] David, O.E., van den Herik, H.J., Koppel, M. and Netanyahu, N.S.,
2014. Genetic Algorithms for Evolving Computer Chess Programs.
IEEE Transactions on Evolutionary Computation. 18(5), pp. 779-
789.

[2] Livingstone, D., 2006. Turing's test and believable AI in games.
Computers in Entertainment (CIE). 4(1), pp. 6.

[2] Reynolds, C.W., 1999. Steering behaviors for autonomous characters.
In proceedings of: Game developers conference., 1999. pp.763-782.

[3] Tomlinson, S.L., 2004. The long and short of steering in computer
games. International Journal of Simulation Systems, Science &
Technology. 5 pp. 33.

5 STUFF

DAVID, O.E., VAN DEN HERIK, H.J.,
KOPPEL, M. and NETANYAHU, N.S., 2014.
Genetic Algorithms for Evolving Computer
Chess Programs. IEEE Transactions on
Evolutionary Computation. 18(5), pp. 779-789.

LAIRD, J.E. and J.C. DUCHI., a. The Humanity
of the Soar Quakebot. In: LAIRD, J.E. and
DUCHI, J.C., eds. The Humanity of the Soar
Quakebot. University of Michigan., a. Michigan:
University of Michigan, .

LAIRD, J.E. and DUCHI, J.C., b. Part VI :
Building Large Soar Programs: Soar Quakebot
[[webpage][docuentation]]. University of
Michigan. [viewed 7/2/17]. Available from:
http://web.eecs.umich.edu/~soar/downloads/Doc
umentation/SoarTutorial/Soar%20Tutorial
%20Part%206.pdf.

LAIRD, J.E. and VAN LENT, M., 2001.
Human-level AI's killer application interactive
computer games. Ai Mag. 22(2), pp. 15-25.

LIVINGSTONE, D., 2006. Turing's test and
believable AI in games. Computers in
Entertainment (CIE). 4(1), pp. 6.

PRINGLE, I., 2016. Rebound Trailer - Dare to
be Digital 2016 [[video][game trailer]]. 27 July
2016. [viewed 7/2/17]. Available from:
https://www.youtube.com/watch?
v=4ajzXWW9MZY.

Mor chaos [1] from Nature.
Chicago [2]
Third is by jones [3] and again [3].
New workflow

6 REFERENCES AGAIN

[1] P. Bamidis, “Affective computing in the era of contemporary
neurophysiology and health informatics,” Interact. Comput., vol. 16,
no. 4, pp. 715–721, Aug. 2004.

[2] S. M. A. Burney, N. Mahmood, K. Rizwan, and U. Amjad, “A
Generic Approach for Team Selection in Multi–player Games using
Genetic Algorithm,” Int. J. Comput. Appl., vol. 40, no. 17, pp. 11–17,
Feb. 2012.

[3] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A
comprehensive survey: artificial bee colony (ABC) algorithm and
applications,” Artif. Intell. Rev., vol. 42, no. 1, pp. 21–57, Jun. 2014.

REFERENCES

[1] A. Gaggioli. Optimal Experience in Ambient Intelligence. In:
Ambient Intelligence. G. Riva, F. Vatalaro, F. Davide, M. Alcañiz
(Eds.). IOS Press (2005).

[2] F. S. Correa da Silva and W. W. Vasconcelos. Managing Responsive
Environments with Software Agents. Journal of Appl. AI (in press).

[3] F. S. Correa da Silva and W. W. Vasconcelos. Agent-Based Manage-
ment of Responsive Environments. Procs. 9th AI*IA, Milan, Italy.
LNAI Vol. 3673, Springer-Verlag, Berlin, Germany (2005).

[6] M. Wooldridge, An Introduction to Multi-Agent Systems, John Wiley
& Sons Ltd., England, U.K., (2002).

[7] Jan M.V. Misker, Cor J. Veenman, and Leon J.M. Rothkrantz,
Groups of Collaborating Users and Agents in Ambient Intelligent
Environments. In: Procs. 3rd Int’l Joint Conf. on Autonomous Agents
& Multi-Agent Systems (AAMAS’04), NY, USA. ACM Press. (2004)

[8] C. Aitken. Designing Software Agents to Manage Responsive Envir-
onments. B.Sc. Hons. Report. Dept. of Computing Science,
University of Aberdeen, UK, http://www.csd.abdn.ac.uk/
~wvasconc/aitken_chris.pdf. (2006).

[9] G. Vizzari, Dynamic Interaction Spaces and Situated Multi-Agent
Systems: from a Multi-Layered Model to a Distributed Architecture,
Ph.D. Dissertation, Universita degli Studi di Milano-Bicocca, Milan,
Italy. (2004)

 [13] D. Weyns, M. Schumacher, A. Ricci, M. Viroli, and T. Holvoet.
Environments in Multi-Agent Systems. The Knowledge Engineering
Review, 20:127-141 (2005).

7 REFERENCES

http://web.eecs.umich.edu/~soar/downloads/Documentation/SoarTutorial/Soar%20Tutorial%20Part%206.pdf
http://web.eecs.umich.edu/~soar/downloads/Documentation/SoarTutorial/Soar%20Tutorial%20Part%206.pdf
http://web.eecs.umich.edu/~soar/downloads/Documentation/SoarTutorial/Soar%20Tutorial%20Part%206.pdf
https://www.youtube.com/watch?v=4ajzXWW9MZY
https://www.youtube.com/watch?v=4ajzXWW9MZY

Towards Immersive 3D Visualisations of Game AI
Algorithms

Edward J. Powley1

Abstract. We propose, as a promising future direction of
research and development, the use of immersive technologies
(particularly Virtual Reality (VR)) to visualise the operation
of game AI algorithms. This has obvious applications when
developing AI agents for VR experiences, but the affordances
of VR may also provide wider insights and more generally
applicable tools.

1 Introduction

Visualisation is one of the most important tools of the re-
searcher or developer working in game AI [3]. Visualising the
operation of an AI algorithm helps to identify bugs, observe
the effects of tweaking parameters, and gain insight into the
operation of a system.

Monte Carlo Tree Search (MCTS) [7, 4] is a game tree
search algorithm which has proven particularly successful
in many challenging game AI domains and decision prob-
lems [2]. MCTS requires only a forward simulation model, and
is an anytime algorithm which can generally yield a reason-
ably good strategy after a short amount of computation time
(though is guaranteed to converge upon an optimal strategy as
the computation time tends to infinity). MCTS is a reinforce-
ment learning algorithm [19], however its basis in state-action
trees makes it easier to visualise than some other machine
learning algorithms.

The principles of effective visualisation of data on a 2-
dimensional page or screen have been well studied [17]. Tech-
nologies such as Virtual Reality (VR), Augmented Reality
(AR) and Mixed Reality (MR) introduce new possibilities for
visualisation, allowing for immersive 3D renderings of com-
plex data. These possibilities are beginning to be explored
across a variety of domains. We propose that immersive visu-
alisation technology holds a great deal of promise for devel-
opers to explore, refine and understand game AI techniques,
both for interactive VR/AR/MR experiences and for more
traditional screen-based games.

2 Visualising game AI

Visualisation of AI algorithms is useful from a software en-
gineering point of view. Champandard [3] identifies three
key benefits of visualising AI systems during game develop-
ment: ensuring code correctness, identifying bugs, and to as-
sist tweaking and tuning.

1 MetaMakers Institute, Games Academy, Falmouth University,
UK. Email: edward.powley@falmouth.ac.uk

Less commonly, AI visualisations can be used as a gameplay
mechanic. In the stealth game Third Eye Crime [6], the game
display is overlaid with a heat-map representing the enemies’
beliefs regarding the location of the player. This allows the
player to predict the behaviour of the enemies, leading to
unique gameplay possibilities. Treanor et al [16] identify AI
visualisation as a game design pattern for foregrounding AI,
however it is relatively under-explored in commercial games.

3 Visualising MCTS

Visualisation is also useful when developing new AI meth-
ods in a research context. This has the benefits identified by
Champandard [3], and additionally can lead to new insights
into how the algorithm works. Figure 1 shows an example
of visualisations created by the author for the Node Recy-
cling MCTS algorithm described in [12]. These give some in-
sight into the operation of the algorithm, though this is lim-
ited by the restrictions of reproducing the visualisation in a
static form. The author also developed a dynamic visualisa-
tion which shows the process “live” as the search progresses,
which gives much greater insight. Figure 2 shows a different
visualisation of the same algorithm, showing the relative fre-
quencies with which available moves are explored and how
the identity of the “best” move changes as the search pro-
gresses. This visualisation is effective on the static page: the
information it displays is one-dimensional, allowing the sec-
ond dimension to be used for time.

Figures 3 and 4 show two other visualisation applications
developed by the author in order to understand and debug
implementations of MCTS. TreeViewer (Figure 3) displays
an MCTS search tree, loaded from disk in a simple XML file
format. It allows nodes to be sorted, expanded, collapsed and
interrogated for various property values. It is possible, though
cumbersome, to achieve some of these tasks using the built-in
debugger in an IDE such as Microsoft Visual Studio, however
a custom application allows the developer much more control
over how the tree is laid out on the screen.

Figure 4 shows an interactive demo application which al-
lows a user to play a range of simple board games against an
MCTS opponent. The search tree built by the MCTS player is
shown on the right-hand side of the screen, and builds in real-
time as the search progresses. The colour of the lines shows
the average reward for the corresponding node in the tree,
and the thickness of the line shows the number of visits, giv-
ing an at-a-glance picture of the most important quantities in
the search tree. For Connect 4, the visualisation also has the

100 nodes

1000 nodes

5000 nodes

1000 2000 3000 4000 5000
Iteration number

Figure 1. Sample visualisations of the Node Recycling MCTS algorithm described in [12], showing how the search tree is built and
destroyed over time under different parameter settings.

nice property that the children of a node from left to right
correspond to the moves of the game, i.e. placing a counter
in a column from left to right, making it easy to see how the
tree corresponds to how the game plays out. The author and
his colleagues frequently use this demo application in out-
reach events, in teaching and in and other presentations, and
find it to be an extremely effective aid to explaining how the
algorithm works.

Figure 5 shows a screenshot from the Multi-Objective Phys-
ical Travelling Salesman Problem (MO-PTSP) [11]. This is a
game in which a spaceship must be piloted around a maze,
passing through a number of checkpoints in any order. The
screenshot shows an MCTS-based controller [13] playing the
game. Overlaid onto the display of the game environment are
the expected trajectory of the spaceship according to the most
explored line of play in the search tree (visible as a green
line protruding from the ship), and the distance map used
to provide heuristic guidance to the search (visible as white
contour lines). Though quite simple, these visualisations pro-
vided much insight when developing and tweaking the agent,
and it is difficult to imagine the final agent being as effective
were it not for this.

4 VR/AR visualisations

In 2000, when VR technology was much less sophisticated
than today, van Dam et al [18] discussed the promise of VR
for scientific visualisation and highlighted some examples of
its use. More recently, VR and other immersive technologies
have been applied to the visualisation of graphs [5], molecu-
lar structures [15], medical data [10] and urban planning [8],
among others. The aesthetic appeal of VR visualisations and
the sense of immersion and presence they afford often blurs

the line between visualisation and art, as in the Mutator VR
project [14] for example.

AR has seen similarly wide deployment, particularly in vi-
sualisations for archtecture and engineering; see [9] for a re-
cent survey, and [1] for an example of commercial deployment.

As van Dam et al [18] point out, the benefit of scientific vi-
sualisation is to exploit the human brain’s aptitude for visual
processing and pattern recognition. VR brings several bene-
fits over screen-based representations. The addition of an ex-
tra spatial dimension (though simulated through stereoscopic
displays and head tracking) allows larger and more complex
data sets to be visualised without clutter. The advanced mo-
tion tracking and haptics of modern input devices such as the
HTC Vive, Oculus Touch and Leap Motion allow the provi-
sion of more intuitive and expressive ways of interacting with
the data. AR has the obvious benefit that visualisations can
be overlaid onto real environments; in contrast, VR lends it-
self to overlaying information onto simulated or reconstructed
environments, or removing the environment entirely.

5 Future directions

Visualisations of game AI are often most effective when over-
laid onto the game world [3]. If the game world is experienced
in VR/AR rather than on a screen, it makes sense for the
overlay to be present in the virtual/augmented space as well.

However, VR visualisations have potential even for applica-
tions of AI outside of VR/AR. When visualising MCTS trees,
a limiting factor tends to be the number of nodes that can
fit onto the screen before the information becomes too dense
to be useful. The extra spatial dimension added by VR, as
well as the potential to visualise information at room-scale or
even larger rather than confined to the page or screen, could

(a) 100 nodes (b) 500 nodes

19
:L2

6-
30

L(
W

)
21

:L6
-2

L(
W

)
26

:L2
6-

30
L(

W
)

27
:L6

-2
L(

W
)

38
:L2

6-
30

L(
W

)
29

2:
L3

-7
L(

D
)

32
6:

L6
-1

L(
D

)
36

0:
L3

-7
L(

D
)

40
2:

L6
-1

L(
D

)
45

3:
L2

6-
3

0L
(W

)
57

2:
L2

6-
3

1L
(D

)
62

5:
L2

6-
3

0L
(W

)

47
27

:L2
6-

31
L(

D
)

100%

0%

P
ro

p
or

tio
nL

of
Ln

od
es

0 1000 2000 3000 4000 5000

Iteration

26-31L(D)

26-30L(W)
6-10L(D)
6-9L(D)
6-2L(W)
6-1L(D)
5-9L(D)
3-8L(L)
3-7L(D) 19

:L2
6-

30
L(

W
)

21
:L6

-2
L(

W
)

26
:L2

6-
30

L(
W

)
27

:L6
-2

L(
W

)
38

:L2
6-

30
L(

W
)

28
2:

L6
-1

L(
D

)
37

7:
L2

6-
3

0L
(W

)
39

8:
L6

-1
L(

D
)

44
6:

L2
6-

3
0L

(W
)

25
71

:L2
6-

31
L(

D
)

30
08

:L2
6-

30
L(

W
)

30
77

:L2
6-

31
L(

D
)

100%

0%

P
ro

p
or

tio
nL

of
Ln

od
es

0 1000 2000 3000 4000 5000

Iteration

26-31L(D)

26-30L(W)
6-10L(D)
6-9L(D)
6-2L(W)
6-1L(D)
5-9L(D)
3-8L(L)
3-7L(D)

(c) 1000 nodes (d) 5000 nodes

19
:L2

6-
30

L(
W

)
21

:L6
-2

L(
W

)
26

:L2
6-

30
L(

W
)

27
:L6

-2
L(

W
)

38
:L2

6-
30

L(
W

)
28

2:
L6

-1
L(

D
)

37
7:

L2
6-

3
0L

(W
)

39
8:

L6
-1

L(
D

)
44

6:
L2

6-
3

0L
(W

)
82

9:
L2

6-
3

1L
(D

)
95

3:
L2

6-
3

0L
(W

)
96

3:
L2

6-
3

1L
(D

)
10

84
:L2

6-
30

L(
W

)
12

19
:L6

-1
L(

D
)

12
94

:L2
6-

31
L(

D
)

17
30

:L6
-1

L(
D

)
21

62
:L2

6-
31

L(
D

)

100%

0%

P
ro

p
or

tio
nL

of
Ln

od
es

0 1000 2000 3000 4000 5000

Iteration

26-31L(D)

26-30L(W)

6-10L(D)
6-9L(D)
6-2L(W)
6-1L(D)
5-9L(D)
3-8L(L)
3-7L(D)

19
:L2

6-
30

L(
W

)
21

:L6
-2

L(
W

)
26

:L2
6-

30
L(

W
)

27
:L6

-2
L(

W
)

38
:L2

6-
30

L(
W

)
28

2:
L6

-1
L(

D
)

37
7:

L2
6-

3
0L

(W
)

39
8:

L6
-1

L(
D

)
44

6:
L2

6-
3

0L
(W

)
82

9:
L2

6-
3

1L
(D

)
95

3:
L2

6-
3

0L
(W

)
96

3:
L2

6-
3

1L
(D

)
13

11
:L6

-2
L(

W
)

100%

0%

P
ro

p
or

tio
nL

of
Ln

od
es

0 1000 2000 3000 4000 5000

Iteration

26-31L(D)

26-30L(W)
6-10L(D)
6-9L(D)

6-2L(W)

6-1L(D)
5-9L(D)
3-8L(L)
3-7L(D)

Figure 2. Sample visualisations of the Node Recycling MCTS algorithm described in [12], showing how the visit frequencies of moves
change over time. The x-axis represents the progress of the MCTS algorithm. Each vertical cross-section of the graph shows the relative

sizes of the trees below each move from the root. The dark region shows the move with the most visits, i.e. the move which would be
selected if the search were halted at this point.

Figure 3. Screenshot of TreeViewer, an application for
exploring MCTS search trees.

Figure 4. Screenshot of InteractiveDemo, an application which
visualises the MCTS tree built by an AI opponent in the game

Connect 4.

Figure 5. Visualisation for an MCTS-based agent in the
Multi-Objective Physical Travelling Salesman Problem.

allow for much larger trees to be visualised effectively. Graph
visualisation and interaction techniques like those proposed
by Erra et al [5] could also prove useful.

The MCTS visualisations described in Section 3 are func-
tional rather than aesthetically pleasing, however there is still
an appeal to watching the trees grow and evolve in real-time.
VR visualisations lend themselves naturally to crossover with
the visual arts, and the automatic sense of presence and im-
mersion given by modern VR hardware means that visualisa-
tions that would look relatively unsophisticated on a screen
can look much more impressive and appealing. More attrac-
tive and engaging visualisations are beneficial in scientific out-
reach and education, and may also fit better with the high
level of visual polish expected of video games. This may lead
more game developers to treat AI visualisations not merely as
a debugging tool but as a potential source of game mechan-
ics, leading to wider exploration of Treanor et al’s [16] “AI is
visualised” design pattern.

REFERENCES

[1] Aviad Almagor. Mixed reality for the AEC industry:
Extending Trimble’s product capabilities with Microsoft
HoloLens. https://buildings.trimble.com/sites/
buildings.trimble.com/files/white_papers/Trimble_
White_Paper_Mixed_Reality_for_The_AEC_Industry.pdf,
2017.

[2] Cameron Browne, Edward J. Powley, Daniel Whitehouse,
Simon M. Lucas, Peter I. Cowling, Philipp Rohlfshagen,
Stephen Tavener, Diego Perez, Spyridon Samothrakis, and
Simon Colton, ‘A Survey of Monte Carlo Tree Search Meth-
ods’, IEEE Transactions on Computational Intelligence and
AI in Games, 4(1), 1–43, (2012).

[3] Alex J. Champandard. Visualization of AI and gameplay:
5 useful examples in practice. http://aigamedev.com/open/
tutorial/rushing-bases/, 2011.

[4] Guillaume Maurice Jean-Bernard Chaslot, Jahn-Takeshi
Saito, Bruno Bouzy, Jos W. H. M. Uiterwijk, and H. Jaap
van den Herik, ‘Monte-Carlo Strategies for Computer Go’, in

proceedings of BeNeLux Conference on Artificial Intelligence,
pp. 83–91, Namur, Belgium, (2006).

[5] Ugo Erra, Delfina Malandrino, and Luca Pepe, ‘Virtual real-
ity interfaces for interacting with three-dimensional graphs’,
International Journal of HumanComputer Interaction, 1–14,
(2018).

[6] Damián Isla, ‘Third Eye Crime: building a stealth game
around occupancy maps’, in proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment (AIIDE), (2014).

[7] Levente Kocsis and Csaba Szepesvári, ‘Bandit based Monte-
Carlo Planning’, in proceedings of European Conference on
Machine Learning, eds., Johannes Fürnkranz, Tobias Schef-
fer, and Myra Spiliopoulou, pp. 282–293, Berlin, Germany,
(2006). Springer.

[8] Xiaoming Li, Zhihan Lv, Weixi Wang, Baoyun Zhang, Jinx-
ing Hu, Ling Yin, and Shengzhong Feng, ‘WebVRGIS based
traffic analysis and visualization system’, Advances in Engi-
neering Software, 93, 1–8, (2016).

[9] Medhi Mekni and André Lemieux, ‘Augmented reality: appli-
cations, challenges and future trends’, in proceedings of Inter-
national Conference on Applied Computer and Applied Com-
putational Science (ACA-COS), pp. 205–215, (2014).

[10] Koosha Mirhosseini, Qi Sun, Krishna Chaitanya Gurijala,
Bireswar Laha, and Arie E. Kaufman, ‘Benefits of 3d im-
mersion for virtual colonoscopy’, in proceedings of IEEE VIS
International Workshop on 3DVis, pp. 75–79, (2014).

[11] Diego Perez, Edward J. Powley, Daniel Whitehouse, Spyridon
Samothrakis, Simon M. Lucas, and Peter I. Cowling, ‘The
2013 Multi-Objective Physical Travelling Salesman Problem
Competition’, in proceedings of IEEE Congress on Evolution-
ary Computation (CEC), pp. 2314–2321, (2014).

[12] Edward J. Powley, Peter I. Cowling, and Daniel Whitehouse,
‘Memory bounded Monte Carlo Tree Search’, in proceedings
of AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE), pp. 94–100, (2017).

[13] Edward J. Powley, Daniel Whitehouse, and Peter I. Cowling,
‘Monte Carlo Tree Search with Macro-Actions and Heuris-
tic Route Planning for the Multiobjective Physical Travelling
Salesman Problem’, in proceedings of IEEE Conference on
Computational Intelligence in Games (CIG), pp. 73–80, Ni-
agara Falls, Ontario, Canada, (2013).

[14] Lance Putnam, William Latham, and Stephen Todd, ‘Flow
fields and agents for immersive interaction in mutator vr:
Vortex’, Presence: Teleoperators and Virtual Environments,
(2016).

[15] A. Salvadori, D. Licari, G. Mancini, A. Brogni, N. De
Mitri, and V. Barone, ‘Graphical interfaces and virtual re-
ality for molecular sciences’, in Reference Module in Chem-
istry, Molecular Sciences and Chemical Engineering, Else-
vier, (2014).

[16] Mike Treanor, Alexander Zook, Mirjam P Eladhari, Julian
Togelius, Gillian Smith, Michael Cook, Tommy Thompson,
Brian Magerko, John Levine, and Adam Smith, ‘AI-based
game design patterns’, in proceedings of the International
Conference on Foundations of Digital Games (FDG), (2015).

[17] Edward R. Tufte, The Visual Display of Quantitative Infor-
mation, Graphics Press USA, 2001.

[18] Andries van Dam, Andrew S. Forsberg, David H. Laidlaw,
Joseph J. LaViola, Jr., and Rosemary M. Simpson, ‘Immer-
sive VR for scientific visualization: A progress report’, IEEE
Computer Graphics and Applications, 20(6), 26–52, (2000).

[19] Tom Vodopivec, Spyridon Samothrakis, and Branko S̆ter, ‘On
Monte Carlo Tree Search and reinforcement learning’, Journal
of Artificial Intelligence Research, 60, 881–936, (2017).

	AI, Games and Virtual Reality
	AI-games-18_Gaudl
	AI-games-18-MacDiarmid
	Alexander MacDiarmid and David Moffat 1
	1 The game Rebound and its bots
	2 Results
	3 The demonstration
	4 References
	5 stuff
	6 References Again
	REFERENCES
	7 References

	AI-games-18-Powley

